KSME Journal, Vol. 9, No. 3, pp. 269~285, 1995

Performance Management of
Integrated Manufacturing System Networks

Suk Lee*, Asok Ray**, Keum Shik Hong*, Joongsun Yoon* and Myung Chul Han*
(Received April 28, 1994)

Performance management of communication networks is critical for speed, reliability, and
flexibility of information exchange between different components, subsystems, and sectors (e.g.,
factory, engineering design, and administration) of production process organizations in the
environment of Computer Integrated Manufacturing (CIM). The objective is to improve the
efficiency in handling various types of messages, e.g., control signals, sensor data and production
orders, by on-line adjustment of the parameters of the network protocol. This paper presents
cornceptual design, development, and implementation of a performance management procedure
for CIM applications. The performance management algorithm is formulated using the concepts
of: (i) perturbation analysis of discrete event dynamic systems; (ii) stochastic approximation; and
(i1i) learning automata. The performance management procedure has been tested via emulation
on a network testbed that is based on the Manufacturing Automation Protocol (MAP).

The conceptual design presented in this paper offers a step forward to bridging the gap
between management standards and users’ demands for efficient network operations since most
standards such as ISO and IEEE address only the architecture, services, and interfaces for
network management. The proposed concept for performance management can also be used as
a general framework to assist design, operation, and management of flexible manufacturing

269

systems.

Key Words :
turing

1. Introduction

Availability of affordable computer hardware
and software has resulted in automation of vari-
ous office and factory operations. These opera-
tions include accounting, forecasting, and market-
ing for business administration; Computer Aided
Design (CAD), Finite Element Analysis (FEA),
and computer simulations for design and engi-
neering; and, Computer Aided Process Planning
(CAPP), inventory control, and monitoring &
control of production processes for manufactur-

*Research Institute of Mechanical Technology,
Pusan National University, Pusan, Korea

**Department of Mechanical Engineering, The Pen-
nsylvania State University, University Park, PA,
USA.

Computer Networks, Performance Management, Computer Integrated Manufac-

ing. In an effort for further productivity gain,
Computer (CIM)
focuses on combining these activities into a single,
closed-loop, and

Integrated Manufacturing

interactive control system.
Essential to the success of CIM is computer
links spatially distributed
islands of automation through timely exchange of

networking which

relevant information such as new production
orders, design modifications, and status report of
manufacturing resources (Ray, 1988).

Computer networks for CIM are required to
transfer information under continuous changes
such as fluctuations in network traffic including
addition, deletion, and failure of network compo-
nents. In order to maintain an acceptable level of
service, computer networks must be flexible to
adapt themselves to variations in traffic load; this
is the responsibility of network management. In

270 Suk Lee « Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

general, network management aims to maintain
reliable, flexible, and efficient network services by
controlling and coordinating available resources.
Among various functions of network manage-
ment, three major components are configuration,
fault, and performance management (Thompson,
1986). Configuration management is related to
establishing the network and accommodating any
configuration changes by modifying the necessary
parameters while the primary functions of fault
management are fault detection, isolation, and
recovery. Performance management monitors a
specified measure of network performance and
executes the identified actions which can improve
the efficiency of network operations.

Basic results have been reported on the archi-
tecture, service definition, management protocol,
and distribution of network management func-
tions (Thompson, 1986; Saydam and Sethi, 1987,
and Klerer, 1988). Several standards for network
management have been already published or
under preparation as an important part of the
integrated protocol suite (MAP/TOP Users
Group, to be released, a and b; Institute of
Electric and Electronic Engineers, 1990; and
Society of Automobile Engineers, 1987). How-
ever, researchers have not apparently addressed
the key issue of how to accomplish the network
management tasks in real time as problems or
disruptions arise either in the network operations
or in the process that is served by the network.
This has happened partly because the develop-
ment of a methodology for network management
is beyond the scope of standardization. Neverthe-
less, from the users’ point of view, network
management is crucial for maintaining an accept-
able level of services as many functions in differ-
ent sectors of CIM operations are dependent on
timely and reliable exchange of information.

Network operations with a single set of proto-
col parameters may not result in acceptable net-
work performance over a prolonged period of
time because characteristics of network traffic and
availability of network resources change from
time to time, especially in the environment of
flexible manufacturing. Therefore, performance
management is needed for tuning the protocol

parameters to maintain the acceptable perfor-
mance. Furthermore, its importance is growing
because a single network often must satisfy
diverse requirements for different classes of mes-
sages resulting from diversity of production
processes and their support services. This situa-
tion usually occurs when a high degree of systems
integration is needed in complex systems by
accommodating different classes of messages on a
single network by virtue of elaborate priority
mechanisms and/or increased network bandwidth
of optical fiber media. For example, a single
network for CIM should be able to deliver vari-
ous messages such as database query and
response, CAD file transfer, interpersonnel elec-
tronic mail, and sensor and control signals within
their time limits of delivery under changing traffic
patterns caused by common events like arrival of
new production orders and machinery break-
down. Even though some protocols (e.g., IEEE
802.4 token bus protocol of MAP) offer mecha-
nisms to handle various types of messages, the key
parameters of the protocol which determine the
network performance are at the network operator’s
disposal. The operator may have to adjust these
parameters on the basis of ad hoc rules and
individual experience because there is no estab-
lished relationship between protocol parameters
and network performance except for the routing
and flow control problems in point-to-point net-
works (Bertsekas and Gallager, 1987).

This paper presents conceptual design, develop-
ment, and evaluation of a performance manage-
ment procedure for multiple-access computer
communication networks in the CIM environ-
ment. The objective is to improve the network
performance by on-line adjustment of protocol
parameters. The performance management algor-
ithm is formulated using the concepts of: (i)
Perturbation Analysis (PA) of Discrete Event
Dynamic Systems (DEDS); (ii) Stochastic
Approximation (SA); and (iii) Learning Autom-
ata (LA). The performance management proce-
dure has been tested via emulation on a MAP
network testbed.

This paper is organized into six sections includ-
ing the introduction and two appendices. Section

Performance Management of Integrated Manufacturing System Networks 2711

2 presents the main theme of the proposed perfor-
mance management procedure including the con-
cepts of PA, SA, and LA. Analytical formulation
of the procedure for the specific case of a token
bus protocol is presented in Section 3. Details of
implementation of the performance management
procedure and its emulation on a MAP network
testbed are described in Section 4. The test results
are presented and discussed in Section 5. Finally,
the paper is summarized and concluded in Section
6. The priority mechanism of the token bus proto-
col considered here is briefly described in Appen-
dix A, and an example of perturbation analysis of
timer setting changes for the token bus protocol is
given in Appendix B.

2. Structure of the Performance
Management Procedure

Network performance, more specifically delays
experienced by message packets, could be critical
for dynamic performance and stability of real-
time manufacturing processes. This is especially
true when multiple machines are performing a
task without direct connections among them. One
of the examples is an intelligent welding system
(Nayak, Ray and Vavreck, 1987) where a
positioning table and a robot have to communi-
cate through a network to exchange the desired
table position coordinates and various messages
for status report. Another example is manipula-
tion of a bulky and flexible workpiece by more
than one independent robots which initiate their
own prescribed trajectories upon receiving a sig-
nal from a controller and report the completion of
the trajectories back to the controller via a net-
work. The timeliness of the transmitted data is
essential because a delay could damage the work-
piece or the robot’s wrists and arms.

In order to maintain an acceptable level of the
dynamic performance and stability of various
manufacturing processes, performance manage-
ment is required to manipulate adjustable proto-
col parameters in real time so that the network
can adapt itself to the dynamic environment. This
can be accomplished in two steps: (1) perfor-
mance evaluation to find how perturbations in

protocol parameters affect a selected performance
measure, i.e., to determine the relationship
between the performance measure and the proto-
col parameters; (2) decision making to decide on
how to adjust protocol parameters, i.e., to identify
the direction and magnitude of the parameter
adjustment vector, utilizing pieces of information
provided in the first step and the history of
performance.

The analytical techniques for performance eval-
uation such as queueing theory (Viswanadham
and Narahari, 1992) often requires unrealistic
assumptions like Poisson arrival, and tend to be
mathematically untractable as the structure of the
performance measure becomes complex. Further-
more, network traffic statistics such as distribu-
tions of message generation interval and message
length, which are required as inputs to the analyti-
cal model, are very difficult to estimate in real
time. On the other hand, discrete-event simulation
(Law and Kelton, 1991) is a viable alternative to
analytical techniques. A major advantage of simu-
lation over any analytical technique is that a
DEDS can be modeled with much less stringent
assumptions, and more complex performance
measures can be handled with relative ease.
However, discrete-event simulation usually suffers
from significant computational burden because a
single simulation run represents only one realiza-
tion of a stochastic process. In order to obtain an
accurate performance estimate under a given set
of parameters, several independent runs (or a
lengthy run if the process is ergodic) are needed,
and these runs should be repeated for different
sets of pertinent parameters. In order to avoid the
estimation of network traffic statistics which are
still required, one can record time of generation
and length for each message and feed this infor-
mation into a simulation model. However, this
requires a large amount of information transfer
from each and individual station to the computer
on which the model is running, which may
degrade the overall network performance.

Over the last decade, Ho and his colleagues
(Ho and Cao, 1991; Ho and Li, 1988; and refer-
ences therein) have developed the technique of
Perturbation Analysis (PA) to circumvent the

272 Suk Lee - Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

difficulties of conventional analysis and simula-
tion in DEDS. PA estimates the DEDS perfor-
mance under perturbed conditions (with different
parameter values) by observing the sequence of
events occurring over a period of time in the
nominal (i.e., unperturbed) system. In fact, PA
constructs parts of event sequence for the pertur-
bed system based on the nominal one. This
approach has a computational advantage over
repetitive simulation especially when no analytic
technique is available. When the effects of y
parameters on a performance measure are to be
evaluated, the conventional discrete-event simula-
tion needs u-+1 runs (one with the nominal
parameters and » runs, each with one perturbed
parameter and the remaining nominal values). On
the other and, PA needs only one run because it
calculates the performance measure of the pertur-
bed system based on the inherent information
from the simulation with the nominal parameter.
Therefore, the ratio of computation time can be
approximately | to 3+ | if the processing time for
PA algorithms is negligible compared to that for
discrete-event simulation. For performance man-
agement, PA is very suitable because this tech-
nique can directly utilize on-line observation of
events. This does not require any identification of
statistical parameters of the network traffic and is
computationally more efficient than discrete-event
simulation. Furthermore, PA still retains the
inherent advantages of simulation over analytical
techniques.

Decision making requires parameter optimiza-
tion, and can be accomplished numerically by
Stochastic Approximation (SA) which utilizes
random measurements over a finite period of time
to estimate the finite-difference quotient of the
performance measure with respect to decision
variables (Rubinstein, 1986). Since the measure-
ment for performance measure is a random vari-
able with an unknown distribution, the estimated
quotients have a non-zero variance at every point.
Consequently, the SA technique has to reduce its
step size as the extremal point is approached. In
many situations, however, more than one optim-
ization algorithm may be required because any
individual algorithm is likely to be efficient only

in some region of the protocol parameter settings
under given statistics of network traffic. An addi-
tional level of decision making is desirable to
select the most appropriate optimization algori-
thm according to the current parameter settings
and traffic statistics. This approach is likely to
enhance the efficiency and credibility of perfor-
mance management in a dynamic operating envi-
ronment whose characteristics are unknown or
partially known. Techniques ' like Learning
Automata (LA) can be used for decision making
at the upper level for selecting the most efficient
and credible optimization algorithm based on the
past performance (Narendra and Thatachar,
1989).

A learning automaton consists of a set of
actions, a corresponding set of action probabil-
ities, and a reinforcement scheme. The action
probabilities are updated by the reinforcement
scheme according to the response from the envi-
ronment which reacts to the action of the learning
automaton. A Performance Evaluator (PE) as a
part of the environment is required to interpret
the response. If the interpretation is favorable,
then the probability of the chosen action is in-
creased and those for other actions are decreased.
By repeating this process, the learning automaton
can select the best action under the current envi-
ronment. In a dynamic environment, the perfor-
mance management algorithm must know
whether the network traffic statistics have chan-
ged because: (i) the optimization algorithm is
likely to have its own ability of adaptation such
as reduction of the step size in SA; and (ii) a
change in network traffic may mislead the learn-
ing automaton in evaluating the performance of
the optimization algorithms. Therefore, whenever
any change in network traffic statistics takes
place, the step size of the optimization algorithm
and the PE may have to be reset.

3. Formulation of a Performance
Management Procedure

The proposed performance management is
based on the principles of Perturbation Analysis

(PA), Stochastic Approximation (SA), and

Performance Management of Integrated Manufacturing System Networks 273

Learning Automata (LA), and its overall struc-
ture is shown in Fig. . The Linear Token Pass-
ing Bus (LTPB) protocol (Society of Automobile
Engineers, 1987) has been selected to demonstrate
the efficacy of this performance management
procedure for adjustment of Token Holding
Timer (THT) and three Token Rotation Timers
(TRTI, TRT2, and TRT3) in real time on the
basis of measured network performance. The
operating principle of LTPB and its priority
mechanism are described in Appendix A.

3.1 Performance evaluation via perturba-
tion Analysis

The knowledge of the relationship between a
selected performance measure and the pertinent
protocol parameters is a critical requirement for
performance management. In this case, the behav-
ior of the LTPB protocol with perturbed parame-
ter settings under the same stochastic realization
is constructed from a single observation with
nominal parameters. The settings of the four
timers of LTPB directly influence data latency
(i.e., the time interval between the instant a
message enters the source station’s queue to the
instant the last bit of the message is received at the
destination station) whose statistics are often one
of the most dominant factors in the network
performance. How to assess the effects of change

Random Traffic
OA
Performance
Network System lc—j
Nominal Time Hista
Netwaork of Network. Protocol
Performance Operations Pilr‘-\l"l:lcler
al
T Perturbation
y——-— Updaic
Perturbed o N e
Network
.. PERFORMANCE Traffic
Performance "gyALUATION Statistics

o Performance
| Evalusior |

Revanboniy.

Jooa

DECISION "
MAKING |

OAi: Stochastic Opumization Algonthms
Fig. 1 Overall Structure of Performance Manage-

ment

in timer settings on network operations is illus-
trated by a simple example of an LTPB network
in Appendix B.

To reduce the complexity of the problem, we
assume that there is no queue saturation on both
nominal and perturbed paths. This assumption
holds good for the majority of network applica-
tions because the network is usually designed to
operate sufficiently below its full load and a safe
margin is allowed in the allocation of queue
capacity. The PA algorithm consists of two parts:
(i) detection of any possible difference between
the nominal path and a pefturbed path; and (ii)
construction of the portions of the perturbed path
which differs from the nominal one. No addi-
tional event scheduling in discrete-event simula-
tion is required for any one of these two parts.
This is critical because a major share of computa-
tions in discrete-event simulation results from
event scheduling and its execution.

Detection of Difference between Nominal and
Perturbed Paths: A portion of the perturbed path
begins to differ from the nominal one when the

number of message transmissions from a queue on
a particular token reception is different from each
other. (Transfer of the right to transmit between
the queues of a station is also considered as a
token reception.) In order to establish the test
conditions for a different number of message
transmissions on the perturbed path, several nota-
tions are introduced.

m : Number of messages just transmitted
from the current queue on the
nominal path, »=0,1,2, ---

q : Number of messages waiting in the
current queue after z; transmissions
on the nominal path, 4=0,1,2, .,

L : Transmission time of the %-th message,
k=1,2,- m,
T : Nominal token circulation time of the

current queue, i.e., the time interval
between the previous and the current
token reception instants.

: Nominal length of THT.

: Perturbation in THT, THT +A4THT
>0.

THT
ATHT

274 Suk Lee - Asok Ray - Keum Shik Hong . Joongsun Yoon and Myung Chul Han

TRT; : Nominal length of TRT;.
ATRT; :Perturbation in TRT;, TRT:
+4TRT; >0.

The following tests must be executed before
passing the token to the next queue after
message transmissions,

TESTO [test for priority class 0]
Case a. 4THT >0 and 3 >0:

2 Lu< (THT+ATHT) and q>0
Case b. 4THT <0 and m > 1:

m—1

2 Lu> (THT +ATHT) (1)

TESTi [test for priority class i, i=1,2,3]
Case a. (TRT:— T) >0, ATRT,>0 and m>0:

S Lu< (TRTAATRT,~ T) and q>0
Case b. (TRT;—T) >0, 4TRT;<0 and m>1:
(TRT.+ATRT,—T) < 3 L.

Case ¢. (TRT:—T) <0 and ATRT;>0:
(TRT;+A4TRT;—T) >0 and ¢>0

Case d. (TRT:—T) >0, ATRT,<0 and m=1:
(TRT,+A4TRT.—T) <0 2)

TESTO.a is applicable if a priority class 0
queue can transmit more message(s) on the per-
turbed path in addition to s transmitted mes-
sages on the nominal path. Additional transmis-
sion is possible only when THT is increased and
there has been at least one message transmission
on the nominal path. (No transmission on the
nominal path implies that the queue is empty
upon token reception.) Further, the increased
THT should be long enough so that the perturbed
THT is not expired even after j; transmissions
and the queue should not be empty for additional
transmission(s). TESTO.b is opposite to TESTO.a.
If TESTO.b is satisfied, then the number of trans-
missions on the perturbed path is less than the
number s of transmissions on the nominal path.
In this case, ATHT should be negative and the
perturbed THT should during the
(m - I)st transmission at the latest. TESTi.a and
TESTi.b are largely equivalent to TEST0.a and

expire

TESTO.b, respectively. TESTi.b
slightly different situation compared to TESTO.b
in the following sense. TESTi.b could imply that
no transmission is allowed on the perturbed path
while there would be at least one transmission on
the perturbed path for TESTO0.b. TESTi.c implies
that some transmissions are possible on the per-

represents a

turbed path while there has been no transmission
on the nominal path due to expiration of TRT,. If
TESTi.d, which can be considered as a special
case of TESTi.b, is satisfied, then no transmission
is allowed on the perturbed path while one trans-
mission was possible on the perturbed path.
Construction of the Perturbed Path: The
construction of a perturbed path consists of three
parts: maintenance of the perturbed queue status;
calculation of the perturbed timer status; and
propagation of the effects of perturbation on the
instant of token reception. Records associated
with a message such as generation time and
message length are kept even after the message is
transmitted on the nominal path. These records
are discarded only after the message is transmitted
on both nominal and perturbed paths. In this
way, queue contents on the perturbed path are
available for construction of the perturbed path.

For the priority level 0, THT status is indepen-
dent of the token circulation time 7 since THT is
always reset to its full value at each token recep-
tion. Therefore, upon a token reception, the
remaining interval of THT on the nominal path
R (0) is always equal to 7HT during which the
priority O queue can start to transmit its messages.
On the perturbed path, the interval R’(0) is

R (0)=THT+A4THT. (3)

For the lower priority levels, the remaining
interval of TRT; on the nominal path is equal to
R () =max(TRT;— T, 0) upon a token recep-
tion, where max (-,) denotes the larger of the
two arguments. Since the interval is dependent on
T, the perturbation on the instants of the current
and previous token receptions at a queue should
be considered, which are denoted by 4C and 4P,
respectively. The perturbation on the remaining
time when the token is received, 4R (), is

Performance Management of Integrated Manufacturing System Networks 275

AP—dC+ATRT;

. if(TRT:— T) >0,

= 4

AR (7) {AP_AC+ATRTi+ TRT.—T @
if(TRT,— T) <0,

The first case of the above equation applies when
the timer is not expired on the nominal path as
shown in Fig. 2. The second case applies when
the timer is already expired prior to the token
reception as shown in Fig. 3. Then, at the token
reception, the remaining interval on the perturbed
path, R’(7), during which priority ; transmis-
sions can start is

R ({)=max (R (i) + 4R (1),0), (5)

AC for the next queue is yet to be obtained for
construction of the perturbed path. The time
X (), spent in transmitting messages from the
current queue, is known from the nominal path.
The time, X’ (), spent for message transmissions
on the perturbed path can be obtained on the
basis of the perturbed queue status and the pertur-

Previous Token Current Token
Reception Instant Reception Instant
on Nominal Path on Nominal Path

Nominal Timer

A

AP - AC
<
\
Perturbed Timer

AP

Previous Token Curremt Token

Reception instant Reception Instant
on Perturbed Path on Perturbed Path

Fig. 2 Perturbed Remaining Interval of TRT{

(Case 1)
Previous Token Current Token
Reception Instant Receplion Instant
on Nommal Path on Nominal Path

Nominal Timer

T AP AC+TRY, -
Perturbed Timer CHETGHGTRR R ATRE
ar 4 | Ak
R
Previous Token Current Token
Reception Instnt Reception Instant
on Perturbed Path on Perturbed Path

Fig. 3 Perturbed Remaining Interval of TRT;
(Case 2)

bed remaining time R’(7). X' (;) is calculated by
summing up the transmission time, [, of the j-th
message from the perturbed queue either until the
perturbed queue becomes empty or until the
perturbed TRT/ is expired, i.e., R’ (;) — X (i) <
0. While calculating X’ (7), the observations, like
data latency on the perturbed path, can be record-
ed for estimating the perturbed performance.

Defining 4X (7) =X’ (i) — X ({), perturbation
at the instant of token reception for the next
queue is obtained as:

ACU+D)=4C () +4X (i) (6)

where the indices 7 and ; + 1 which indicate the

current and the next queues are based on modulo

4, i.e., they range from 0 to 3.

Summary of the PA algorithm: The algorithm

for perturbation analysis of the LTPB protocol is

summarized in four steps as delineated below.

Step 1. Perform appropriate tests (TESTO and
TEST:, i=1, 2, 3) just before passing the
token to the next queue or station. Set the
flag if any of the tests are satisfied.

Step 2. If the flag is not set, repeat Step 1 for the
next queue or station. Otherwise, proceed
to Step 3.

Step 3. Execute the construction procedure for
the current queue before passing the
token.

Step 4. Repeat Step 3 until all queues have JC=
0 and 4P =0 during a token circulation.
If so, clear the flag and go to Step 1.

3.2 Stochastic approximation

Although the Stochastic Approximation (SA)
technique described in (Rubinstein, 1986) has
been proved to converge in a stochastic sense, it is
known to have a slow convergence in many
practical situations due to the fact that its step size
is uniformly reduced regardless of the current
value of decision variable x[%] (a 4x1 vector of
timer settings in this paper) at the k-th iteration.
To circumvent this difficulty, the conventional
algorithm is modified following Ho et al. (Ho and
Cao, 1983). This modified algorithm, hereafter
referred to as Modified Stochastic Approximation
(MSA), can be written as follows.

276 Suk Lee - Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

I'[£] is a diagonal matrix whose non-zero ele-
ments are not restricted to be identically equal
and are dependent on the number of sign reversals
in the corresponding forward or backward finite-
difference quotient ¢.*[k]. The ;-th diagonal
element of I"[%] is
v:{ k] =max (c.r*™*, [)

where ¢, is a positive constant for initial step size,
r< (0, 1) is a reduction factor, the ¢;[£] is an
integer counter variable indicating the number of
sign reversals in the i-th quotient ¢,*[£], and / is
the lower bound common to all diagonal ele-
ments. The forward or backward quotient of the
observed performance g(x[£], w{k]) at a sam-
ple point (4] is defined as

qi k]
_gx[k]+dx[E]w;, w(k])—gx[k], w[k])
sz[k] (8)

where u, is the i-th unit vector, and a positive

perturbation for i-th decision variable, 4x,[£] is
used for forward difference while a negative
Ax.:[£] for backward difference. The MSA algor-
ithm also utilizes the past quotients to smooth the
adjustments in x[£]. The function f takes a
weighted average of s, recent quotient vectors

q*lk]l= Zn]q,~i [£]u,. That is, the ;-th element of £
i=1
is written as
fila* k], - q*lk—mu,+1])

g(x[£], wlk]) 2 wxlk—j+1gt[k—j+1]
xilk] Agx[k—7+1], wlk—7+1]D)

9

where g; w;=1and y,>0 V.

Remark: The basic idea behind the MSA algor-
ithm is that the sign of the quotient changes more
frequently as x[%] approaches its optimal point
since the noise contained in the quotient is likely
to determine the sign. The MSA algorithm adapts
its step size based on the number of sign reversals
in the quotient in contrast with uniform reduction
in stochastic approximation. The weighted aver-
aging function f serves to reduce the length of a
period to measure the performance and to avoid

alternating direction of the parameter adjust-
ments. With an appropriate choice of the window
size m, and the weighting factors ¢y; inherent
noise in measurements may be reduced without
sacrificing the speed of convergence. However, a
rigorous proof of the convergence for the MSA
algorithm has not been established. This is appar-
ently untractable because of the dependence of the
step size on past history.

3.3 Learning automata

For autonomous selection of the optimization
algorithm, the Variable-Structure Stochastic
Automaton (VSSA) (Narendra and Thatachar,
1989) has been adopted because greater flexibility
can be exercised within a smaller structure in
comparison to those in fixed or deterministic
settings. The reinforcement scheme in VSSA
updates the action probabilities in discrete time
based on the responses from the Performance
Evaluator (PE). The next action of the automaton
is selected on the basis of the updated action
probabilities whose sum is equal to one. A sim-
plified VSSA is represented by the triple { 7, 3,
A} where 7={a, @, ", @}, B={Bn B
Bs}, and A: @ X B — @ is the reinforcement
scheme. 7 is the set of available actions (i.e.,
optimization algorithms); @[%k] denotes the
action at the instant k. B is the set of responses
(i.e., possible levels of performance of the current
optimization algorithm) that are inputs to the
automaton, and the response at the instant k is
denoted by g{k].

The discrete reinforcement scheme for perfor-
mance management has been formulated follow-
ing the concept of discrete reward, penalty
(DRP) automaton (Oommen and Christensen,
1988). In this case, the automaton has two avail-
able actions (i.e., there is a choice between two
alternative optimization algorithms) in response
to five possible inputs, namely 0, 0.25, 0.5, 0.75,
and 1, from the environment. Among these inputs,
B1=0 indicates the most favorable response while
Bs=1 is the most unfavorable one. The reinforce-
ment scheme has M +1 states (i.e., the action
probability is allowed to assume one of the A/ + 1
values) where }f is an even number greater than

Performance Management of Integrated Manufacturing System Networks 217

two. The reinforcement scheme is presented
below:
2 if g[k]=1 and B[£]=0,
M orif g[k]=2 and Blk]=1;
1 if g[£]=! and g[k]=0.25,
M orif g[k]=2 and g[k)=0.75;
Ap[k] =10 if B[k]=0.5; (10)
—1 if @[k]=1 and B[£]=0.75,
"M orif ¢[k]=2 and g8[k]=0.25;
—2 if g[k}=1 and Blk]=1,
M orif a[£]=2 and B[£]=0
and
min(p (] +dp[k], 1)
if dp,[k]>0,
pilk]
1"[’“’”:{ if Api[£]=0, b
max (p:[k]+dp[£],0)
if Api[k]<0

where p,[%] is the probability of selecting ¢,. The
probability of selecting a is given as p[k]=1
”pl]:/’t’]'v k.

4. Implementation of the Performance
Management Tool

The performance management algorithm has
been implemented on a network testbed where the
LTPE protocol under consideration was emulat-
ed by two interacting application processes. The
testbed is operated on the 1IEEE 802.4 token bus
protocol in the environment of the (10 Mbps
broadband) Manufacturing Automation Protocol
(MAP). The physical configuration of the testbed
consists of a length of coaxial cable, a head-end
remodulator, and three hosts. Each host computer
is equipped with two network cards from Indus-
trial Networking Incorporated (Industrial
Networking Incorporated, 1987). One of the hosts
operates as a network management console for
initial down-loading of the protocols to the
remaining two hosts. For these two hosts, a soft-
ware package has been developed to emulate a
number of LTPB stations by generating, transmit-
ting, and receiving messages which are essentially
packets of the Association Control Service Ele-
ment (ACSE) of MAP.

4.1 Implementation strategy

Since the PA algorithm involves only logic and
addition operations, it has been implemented in a
distributed manner so that the algorithm is execut-
ed at each station to estimate the network perfor-
mance under perturbations. The algorithm is
capable of following four perturbed paths in
which one of the four timer settings of the LTPB
priority mechanism is perturbed. The effect of a
timer perturbation (perturbation in the token
reception instant) on the next station propagates
through the logical ring via the token which
carries this information. In this distributed imple-
mentation, additional traffic due to management
operations is expected to be significantly smaller
than that for a centralized PA algorithm which
requires information on contents of queues and
timer status from all stations. On the other hand,
the decision-making module that includes sto-
chastic approximation and learning automaton is
centralized at a designated station, hereafter refer-
red to as performance manager. Even though the
network may have more than one station with
partial or complete capability to execute decision-
making functions, the centralized strategy allows
only one active copy of each decision-making
function. The rationale for selecting centralized
decision making is that the distributed strategy,
where every station could make decisions
autonomously based only on its local perfor-
mance, would result in inconsistency and conflict
by having different timer settings over the net-
work.

Network operations under the proposed perfor-
mance management procedure involve a series of
iterations which consist of an observation period
and subsequent management actions. At the
beginning, the performance manager broadcasts
the initial timer settings and timer perturbation
vectors to all stations. During an observation
period, each station executes its own PA algori-
thm, and the performance manager monitors the
messages flowing over the network. When the
performance manager decides that enough data
have been collected, it waits for the token and
then broadcasts the request for a performance
report to all stations. Then the performance

278 Suk Lee - Asok Ray -

manager passes the token without any further
message transmission. Once this request from the
performance manager is received, other stations
interrupt their normal operations, prepare the
performance reports, and transmit these reports as
soon as the token is received. After one complete
token circulation, the manager receives the token
again and, by this time, reports from all other
stations have been received. Then, the manager
processes the reports, computes new timer settings
and broadcasts them with new timer perturbation
vectors for the next iteration. Upon reception of
the new settings and perturbation vectors, all
stations set their corresponding variables and
wait for the token to resume normal operations.

4.2 Implementation details

In this implementation, a measure of the net-
work performance has been formulated on the
basis of observed data latency. Throughput of the
network is excluded from the performance mea-
sure since the network traffic is assumed to be
below the network capacity, which implies that
all messages entering the network are eventually
transmitted to their destination. In other words,
the throughput is equal to the offered traffic.
Therefore, the main focus of the performance
measure is on data fatency, i.e., how long it takes
for a message to reach its destination relative to
the instant of its generation. This type of perfor-
mance measure will reflect how timely the mes-
sages are delivered and will be suitable for many
manufacturing applications such as the intelligent
welding system and the manipulation of bulky
objects. The network performance g(-, +) is ex-
pressed as a function of data latency:

g(x[k], wlk])
=P e Fu8 LA, 0l £])

-0 (5T S e S wlk))

(12)

where o= [0, 1] is a weighting factor, m,[£] is
the number of messages observed during the .-th
iteration, ; denotes priority level, ;[%] is the
number of the priority level ; messages during the
k-th iteration which is related to m,[4] by

Keum Shik Hong - Joongsun Yoon and Myung Chul Han

malk] =232 m:[k], and 8(x[£], w[k]) is the
data latency of the ;-th priority level ; message
during the 4-th iteration. F;(+) is a penalty func-
tion for the priority level ; messages and is
defined as

Fi(8j(x[£], w[k]))=

0

if 8/(x[£], w(k]) <6,
(6i(x[k], wlk])—6)?

if 6,<8j(x[k], wlk])<6:+ 5,
b

if 5j(x[%], w[k])>6:+b:

(13)

with penalty threshold g, and penalty band 4, for
the priority level ; messages.

The first term of the performance measure
represents the average penalty over all messages
such that a message of which data latency exceeds
the corresponding threshold is penalized accord-
ing to the penalty function F;(-). This is analo-
gous to variance of data latency. This form of
penalty is especially useful for messages carrying
time-critical information such as control signals
and sensor data, interrupt signals, and video and
voice data. The second part of the performance
measure takes into account the square of average
data latency over all messages. For network emu-
lation on the testbed, o is set to one because the
two terms of the performance measure were found
to have a very close correlation with each other
from simulation experiments.

The Performance Evaluator (PE) assesses the
performance of an optimization algorithm by
observing various items after timer settings have
been changed. To this end, the performance of an
optimization algorithm has been formulated
focusing on its stepwise behavior rather than the
asymptotic one. In fact, the asymptotic perfor-
mance of an algorithm may not be measurable
because the performance manager usually
switches from one algorithm to another. The PE
maintains history of the network performance and
adjustment of the timer settings in order to pro-
vide criteria for evaluation of the recent action by
the learning automaton. In this implementation,
records for the past five iterations are maintained.
The PE compares the current network perfor-

Performance Management of Integrated Manufacturing System Networks 279

mance with the average network performance of
the past iterations. Also, the magnitude and the
signs of the current timer changes are compared to
those of the averaged timer changes for the past
iterations. Since perturbation analysis is executed
all the time, the signs of the next changes are
available for the PE to compare the signs of the
current changes to those of the next changes.
According to these comparisons, the PE selects
one value for B[%] out of possible five values.

5. Results and Discussion

The first part of this section presents the results
from simulation experiments which were conduct-
ed to investigate the accuracy of the PA algorithm
which is an important ingredient of the perfor-
mance management tool. The second part focuses
on the results from emulation experiments on the
network testbed to demonstrate the efficacy of the
proposed tool.

5.1 Results of simulation experiments

An LTPB network with 10 stations has been
simulated with the transmission rate of 350
megabits per second (Mbps) and queue capacity
of 10 messages for every queue. The network
traffic is composed of messages at four priority
levels. The total network traffic takes 70 percent
of the network capacity on the average: 10 percent
for priority level O and 20 percent each for prior-
ity levels 1, 2, and 3. The PA algorithm formulat-
ed in Section 3.1 has been implemented in the
simulation. This implementation maintains four
separate perturbed paths and only one timer
setting can be perturbed in each path. The simula-
tion result under a typical scenario is discussed
below.

Having set the timers, THT, TRTI, TRT2, and
TRT3, at the nominal values of 150, 1000, 800,
and 600 usec, respectively, the PA algorithm was
used to estimate the perturbed performance under
four different perturbations on TRT3: -100, -50,
50, and 100 psec. Four additional simulation
experiments have also been performed to obtain
the network performance with 4 sets of the pertur-
bed timer settings without using the PA aigorith-

m.
Figure 4 shows the absolute values of percent
error in estimating the perturbed network perfor-
mance with TRT3 perturbations. In Fig. 4, S
denotes the number of future message generations
considered by the PA algorithm. For $=0 where
no future message is taken into consideration
(shown by solid black bars), the error for the
positive perturbation is much larger than that for
the negative one. The reason is that a positive
increment in a timer setting is likely to make the
perturbation in token reception instant 4C posi-
tive during a major part of the simulation experi-
ment because an increased timer setting enables
the corresponding queues to transmit more mes-
sages compared to the nominal path. If 4C is
positive, the PA algorithm has to construct the
perturbed path with no knowledge on any poten-
tial change in the queue contents from the present
time {. In order to reduce errors in estimating the
perturbed performance, the PA algorithm has
been modified to look into the event calendar so
that the next message generation at a given queue
can be considered in constructing the perturbed
path. This idea has been extended to consider
message generations further in the future by
scheduling more than one message generation for
a given queue. The shaded bars for S=1 in
Fig. 4 show a significant reduction in the absolute
values of the percent error when one future
message generation at each queue is considered by

W s-o0
A s=1

0.825

Percent Error in Performance

TRT3 Perturbation (usec)

Fig. 4 Percent Error of the PA Algorithm with
TRT3 Perturbation

280 Suk Lee - Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

the PA algorithm. However, this method for
reducing errors is applicable only to simulation
experiments. Simulation results show that the PA
algorithm is capable of estimating the perfor-
mance of the LTPB network under perturbed
parameters by using the results of a single simula-
tion experiment under the nominal condition. The
estimation errors are found to be within 3 percent
from all simulation experiments for perturbations
in THT, TRTI, TRT2 and TRT3.

5.2 Results of emulation experiments on the
testbed

Three experiments, conducted on the network
testbed, are reported here as typical results. For
each of these experiments, the emulated network
was run for 100 iterations which are equivalent to
300,000 message transmissions. During the first 25
iterations, the network was operated without any
performance management action in order to
achieve the steady-state operations. Four timers of
the LTPB priority mechanism were adjusted on
line during the remaining 75 iterations. The net-
work is loaded with 60 percent of its capacity
which is evenly distributed over four priority
levels. The network traffic for the priority levels 0
and 1 is intended to emulate real-time messages
such as control signals and sensor data which
have a stringent time limit. Both priority levels
have uniformly distributed message length and
interval between message generations. The mes-
sages at the priority level 0 are generated more
frequently but with a smaller number of bytes
compared to those at the level 1 in order to
represent messages for the systems with fast
dynamics. On the other hand, the priority levels 2
and 3 have exponentially distributed message
length and interval between message generations
with larger averages than those for the priority
levels O and . This scenario mimics the network
traffic of occasional information transfer for other
non-real-time applications such as NC program
downloading and inventory control activities.

For these experiments, two different MSA al-
gorithms (described in Section 3.2) were used: one
is referred to as conservative and the other as
liberal. The conservative MSA algorithm has

smaller values for initial step size ¢;, reduction
factor #, and weighting factor j», compared to the
liberal algorithm. In other words, the conserva-
tive algorithm tends to adjust timers in smaller
increments and to reduce its step sizes faster
compared to the liberal algorithm. For the first
two experiments, the two algorithms were used
separately and one at a time for performance
management without the learning scheme. This is
referred to as the single-algorithm performance
management (SPM). The conservative SPM was
found to yield better cumulative performance
than the liberal SPM. For the third experiment,
both algorithms were employed together for per-
formance management but one and only one of
the two algorithms is selected by the learning
automaton at any given iteration. This is referred
to as the dual-algorithm performance manage-
ment (DPM).

Figure 5 shows a comparison between the
cumulative network performance of the DPM and
the conservative SPM. As a reference, the network
without any performance management is also
shown in Fig. 5. Up to 50 iterations, both SPM
and DPM yield comparable network performance
which is significantly superior to that without any
performance management. Then onwards, the
cumulative performance using the DPM improves
faster than that using the conservative SPM. The
rationale is that the DPM selects the liberal SPM
(which has relatively larger step sizes) more fre-

osof Ww
&Mmf

Cumulative Performance (sec**2)

“om8see Conservalive SPM

——%— DPM

0.20 i N A 1 L
o 20 40 60 80 100

licration Number

Fig. 5 Comparison of Cumulative Performance

Performance Management of Integrated Manufacturing System Networks 281

quently to change timer settings in larger incre-
ments while the conservative SPM changes the
settings in smaller increments which are reduced
prematurely.

6. Summary and Conclusions

A performance management algorithm for
multiple-access networks has been conceptual-
ized, and formulated for a token bus protocol by
using the principles of: (i) perturbation analysis
of discrete event dynamic systems; (ii) stochastic
approximation, and (iii) learning automata. The
procedure is aimed to improve the performance of
CIM networks in handling various types of
messages by on-line adjustment of protocol
parameters, and has been emulated on a network
testbed. The conceptual design presented in this
paper offers a step forward to bridging the gap
between management standards and users’
demands for efficient network operations since
most standards such as ISO and IEEE address
only the architecture, services, and interfaces for
network management. The following major con-
clusions are derived from the results of simulation
and emulation of performance management of
Linear Token Passing Bus (LTPB) protocol.

O The perturbation analysis algorithm can esti-
mate the performance of an LTPB network
(e.g.. IEEE 802.4 within the MAP architec-
ture) by using the results of a single simula-
tion experiment under the nominal condition.
The estimation errors are found to be within 3
percent for all simulation experiments.

O The performance of a manufacturing system
network can be maintained by on-line adjust-
ment of its timers while the traffic load may
change to meet the production schedules,
equipment failures, or other disruptions. Most
importantly, the performance management
procedure does not require identification of
the network traffic statistics.

O The discrete reward/penalty (DRP) reinforce-
ment scheme is well suited as an ingredient of
on-line performance management under un-
known and dynamically changing environ-
ment.

O The framework developed in this research
may be extended to a wide range of Discrete
Event Dynamic Systems (DEDS) including
FMS. According to the current status of an
FMS, manufacturing resources such as robots
and programmable machine tools can be
dynamically allocated to various manufactur-
ing processes of different product types.

As described in this paper, the performance
management of a network has to be executed with
insufficient a priort knowledge in the perfor-
mance characteristics of the network and its sur-
rounding environment. It may be effective to
employ various knowledge-based techniques such
as fuzzy reasoning, expert system, neural network,
and genetic algorithm.

References

Bertsekas, D. and Gallager, R., 1987, Data

Networks, Prentice Hall.
Ho, Y-C. and Cao, X-R., 1983, “Perturbation
Analysis and Optimization of Queueing Net-
works,” Journal of Optimization Theory and
Applications, Vol. 40, No. 4, pp. 559~ 582.

Ho, Y-C. and Cao, X-R., 1991, Perturbation
Analysis of Discrete Event Dynamic Systems,
Kluwer Academic.

Ho, Y-C. and Li, S., 1988, “Extensions of
Infinitesimal Perturbation Analysis,” IEEE
Transactions on Automatic Control, Vol. AC-33,
No. 5, pp. 427~438.

Industrial Networking Incorporated,
MP-400 Programming Reference Manual.

Institute of Electric and Electronic Engineers,
1990, ANSI/IEEE Standard 802.4 Token Pass-
ing Bus Access Method and Physical Layer
Specifications.

Klerer, S. M., 1988, “The OSI Management
Architecture: An Overview,” IEEE Network,
Vol. 2, No. 2, pp. 20~29.

Law, A. M. and Kelton, W. D., 1991, Simula-
tion Modeling and Analysis, 2nd ed. McGraw-
Hill.

MAP/TOP Users Group, Manufacturing
Automation Protocol (MAP) 3.0, Implementation
Release.

1987,

282 Suk Lee - Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

MAP/TOP Users Group, Technical and
Office Protocols (TOP) 3.0, Implementation

Release.

Narendra, K. S. and Thatachar, M. A. S,, 1989,
Learning Automata, Prentice Hall.

Nayak, N., Ray, A. and Vavreck, A. N., 1987,
“Adaptive Real-Time Intelligent Seam Tracking
Systems,” Journal of Manufacturing Systems,
Vol. 6, No. 3, pp. 241 ~245.

Oommen, B. J. and Christensen, J. P., “g-
Optimal Discretized Linear
Learning Automata,” IEEE Transactions on
Systems, Man and Cybernetics, Vol. SMC-18,
No. 3, pp. 451~458.

Ray, A., 1988, “Networking for Computer-
Integrated Manufacturing,” IEEE Network, Vol.
2, No. 3, pp. 40~47.

Rubinstein, R. Y., 1986, Monte Carlo Optim-
ization, Simulation and Sensitivity of Queueing
Networks, John Wiley.

Saydam,T. and Sethi, A. S., 1987, “Token Bus/
Ring Local Area Network Management Concepts
and Architecture,” IEEE INFOCOM, pp. 988
~993.

Society of Automobile Engineers, 1987, Linear
Token Passing Multiplexed Data Bus Standard,
Version 3.0.

Thompson, D. M., 1986, “LAN Management
Standards—Architecture and Protocols,” IEEE
INFOCOM, pp. 355~363.

Viswanadham, N. and Narahari, Y., 1992,
Performance Modeling of Automated Manufac-
turing Systems, Prentice Hall, Englewood Cliffs,
NJ.

Reward-Penalty

Appendix A
Linear Token Passing Bus Protocol

A token bus protocol is a distributed
controlled-access protocol for the Medium Access
Control (MAC) layer. The right to use the
medium is explicitly controlled by a special bit
pattern called a token, and the responsibility of
controlling the use of the medium lies with every
station. This appendix describes the priority
mechanism of the Linear Token Passing Protocol
(LTPB) which is used in this paper to demon-

strate efficacy of the proposed performance man-
tool. A complete description and
detailed specifications of the LPTB are given in
the reference (Society of Automobile Engineers,
1987).

A token bus network consists of a number of
stations connected via a broadcast medium on

agement

which any transmission from a station can be
heard by all stations. The right to transmit a
message is given to a station when it receives a
special bit pattern called a token. The token is
passed from a station to another following a
sequence of station addresses. The last station in
the sequence sends the token back to the first
station to form a logical ring. A station may
transmit its messages before it passes the token to
the next station in the logical ring sequence. A
station with the token has complete control of the
medium for a finite period of time. The length of
this period depends on the number of waiting
messages and the status of several timers as ex-
plained later on priority mechanism. A station
can transmit a number of messages or can pass the
token to its successor (i.e., the next station in the
logical ring sequence) without any transmission.

The LTPB protocol has a priority mechanism
of four levels, namely 0, 1, 2 and 3, among which
the priority level 0 has the highest privilege of
medium access. Each priority level has a queue to
provide temporary waiting space for messages of
the corresponding priority level. A Token Hold-
ing Timer (THT) and three Token Rotation
Timers, i.e., TRTI, TRT2 and TRT3 regulate
message transmissions for the priority level 0, 1, 2
and 3, respectively. The priority level 0 messages
are allowed to start transmission within a period
equal to the length of THT. For the lower prior-
ity level messages, the initiation of a transmission
must not occur beyond the residual period (i.e.,
the time left until its expiration) of the corre-
sponding timer (TRTi, i = 1, 2, 3). If a timer
expires while the corresponding priority message
is being transmitted, the transmission will be
continued to completely finish the current mes-
sage and no further transmission is ailowed until
the instant of next token reception.

If a station receives the token, it performs a

Performance Management of Integrated Manufacturing System Networks 283

self-diagnostics during the period of Response
Time (RT) before any transmission. At the end of
RT, the station resets THT to its full value and
checks whether any message is waiting in the
priority 0 queue. If the queue is empty, the chance
of transmission is given to the priority level 1;
otherwise, the station starts its THT and begins to
transmit the oldest message in the priority 0
queue. At the completion of a message transmis-
sion, the station checks whether THT has expired
and whether there are more messages waiting in
the priority O queue. If THT is not expired and
the queue is not empty, the station starts another
message transmission. This procedure continues
either until the queue becomes empty or until
THT expires.

After the station finishes the above procedure
for the priority level 0 messages, it checks if TRT1
has expired. If it is expired or the priority | queue
is empty, then TRTI is reset to its full value and
restarted, and the chance of transmission is passed
to the priority level 2 messages without any trans-
mission of the priority | message. If TRTI1 is not
expired and the priority | queue is not empty,
then THT is restarted after being reset to the

Token Capture

Reset THT to
Residual Value of TRTi
and Stan
(]
Reset THT 1o Resel TRTi 10
its Fult Value its Full Value
and Stan and Start

THT
Expired or
Empty Priority i
Qucue

Fig. A-1 Priority Mechanism of LTPB Protocol

remaining value of TRTI, and TRT1 is reset to its
full value and restarted. The priority level 1
messages can be transmitted consecutively either
until THT expires or until there is no message in
the priority | queue.

When one of two conditions, namely, THT
expiration and empty priority 1 queue is satisfied,
the station begins the same procedure for TRT2
and the priority 2 queue, and continues for TRT3
and the priority 3 queue. After the station com-
pletes the procedure for the priority level 3, the
token is passed to the successor station. This
priority mechanism is summarized by a flowchart
in Fig. A-1.

Appendix B
Perturbation Analysis for Timer Setting
Changes of the LTPB Protocol

The network under consideration in this exam-
ple consists of three stations. Each station has
only one Token Rotation Timer (TRT) in addi-
tion to Token Holding Timer (THT) that is used
as a dummy timer to store the remaining time of
TRT. For simplicity, it is assumed that message
transmissions are solely controlled by the status
of TRT. Therefore, each station is considered to
have only one queue. Fig. B-1 depicts evolution of
the network with a nominal TRT setting
(nominal path) along with evolution with a per-
turbed TRT setting (perturbed path). The status
changes of the station 7, /=1, 2, 3, are represented
by S; and S/ for the nominal and the perturbed
paths, respectively. S, consists of four elements,
namely, Message Generation Instant (MSG),
Message Transmission Instant (XMT), Token
Holding Timer status ({THT) and Token Rotation
Timer status (TRT). For the perturbed path, S/
consists of three perturbed elements where MSG
is excluded because the instants of message gener-
ation are identical for both.

MSG is essentially the instant of message inser-
tion into the queue. It is denoted by a down arrow
with an appropriate identifier, M, (). for the j-th
message at station ;. XMT indicates the time
interval of transmission and contains two kinds of
transmissions. A block with a letter T denotes

284 Suk Lee - Asok Ray - Keum Shik Hong - Joongsun Yoon and Myung Chul Han

0 4 7 9 10 11 13 14 17 20 24 27 Time
L | L 1| 1 ! 1 | I} 1
MSG * M, (1) Legend
xmT[T] T M, (D) [T] -
S, THT [s R SE] S ¢
- Nominal
TRT [s R : RS Station §
XMT[T [T] T s
Sy THT | s R S Perturbed
Station i
TRT [s R R|s i
MSG M, (1) * *Ma(z)
= e Message
xmr| [T M) M ofT [T] [T] | Generation
R|S Token
xwrl 7] 1]
S THT |R]|S =8 v
TRT [R| s s m‘
MSG T'-S
imer Slart
XMT —ﬂ and Reset
$3 THT R[S
TRT R|S
XMT E Tlm:rr' dSlan
$53 THT s | Expiration
TRT R[S

Fig. B-1 Effects of TRT Perturbation on Network Operations

transmission of the token, and message transmis-
sion is depicted by a block with an appropriate
message identifier. For THT and TRT, a block
represents the time period while the correspond-
ing timer counts down, which always starts with
a letter S (start). The block ends with a letter R
(reset) if the timer is reset before expiration.
Otherwise, i.e., if the timer is expired, the block is
shaded and ends with a letter E (expire).

Figure B-1 illustrates network operations from
the initial time = O when none of the three
stations have any waiting message(s) and station
I just received the token. Each token pass is
assumed to take one unit of time including the
time required for the source station to transmit
the token and that for the destination station to
respond. The nominal length of TRT is taken to
be 7 units of time.

On the nominal path (focusing on §;, S, and S,
in Fig. B-1), since the queue of station | is empty,
the token is passed to station 2 immediately -after
resetting and restarting its THT and TRT. At ¢t=
1, station 2 receives the token. This process con-
tinues until station 2 receives the token again at ¢
=4. At this moment, its queue contains two
messages and TRT is not yet expired. Therefore,
station 2 resets and starts its THT having the

remaining time of its TRT (4 units) at disposal,
and resets and starts its TRT. Almost simultane-
ously (it is assumed that timers are reset and
started instantaneously), station 2 begins to trans-
mit its first message M/, (1) which takes 3 units of
time to be transmitted. When the first message is
finished, THT still has one unit of time left and
the second message M,(2) is started. After finish-
ing M, (2), the token is passed to station 3 which
starts its TRT and passes the token to station 1.
Upon token arrival at ¢ = 11, station 1 has one
waiting message. However, its transmission is not
allowed because of TRT expiration at ¢ = 10
before the token reception. When station 3
receives the token ¢ = 13, it can transmit M, (1)
of two units since the message is already in the
queue and TRT still has 4 units of time left to its
expiration. When the token returns to station I at
t = 17, station 1 finds one unit of time left on its
TRT and starts transmitting 3£, (1) of four units.
After this transmission, the network becomes
empty resulting in token circulations without any
message transmission.

For the perturbed path (S/, S’ and Sy’ in Fig.
B-1), the TRT in station 2 has been perturbed
by -2 units of time while keeping TRT unchanged
in stations 1 and 3. This change is solely for the

Performance Management of Integrated Manufacturing System Networks 285

purpose of illustration since a timer is usually set
identically for all stations in standard protocols.
Effects of the perturbation do not appear on the
perturbed path until Af,(1) is finished at t = 7
(compare S, and S, at { = 7). Due to the
reduced length of TRT, THT of station 2 has
started with only 2 units when the token is
received and expires while M, (1) is being trans-
mitted. Therefore, no further transmission is all-
owed and M, (2) should wait for the next oppor-
tunity. Due to the deferred transmission, stations
3 and 1 receive the token 2 time units earlier
(which is required for transmission of },(2)) on
the perturbed path. At ¢ = 9, station 1 has one
unit of remaining TRT due to earlier token recep-
tion and it can transmit M, (1). When the token
returns to station 2 at ¢ = 14, station 2 is again
disallowed to transmit Af,(2) because of TRT
expiration. Station 3 also loses the opportunity to
transmit M5(1) due to the same reason. Eventu-
ally, M,(2) and Ms(1) are transmitted at { = 17
and ¢ = 20, respectively.

After transmission of Af;(1) on the perturbed
path, the perturbed instant of the token reception
by station | at ¢t = 24 coincides with that on the
nominal path even though the status of its TRT is
different from each other. This implies that the
instants of token reception by a given station on
the nominal and the perturbed path become iden-
tical after transmission of all messages that are
affected by the timer perturbation. The timer

status on the perturbed path also becomes identi-
cal to that on the nominal path after one more
token circulation (from ¢ = 27) except station 2
where the timer is perturbed.

It follows from Fig. B-1 that it is impossible
to predict the time of Af,(2) transmission on the
perturbed path without considering the queue
contents and timer status after detecting that
M,(2) cannot be transmitted at ¢ = 7 due to the
perturbation in TRT. This is because the order of
transmissions is dependent on the status of TRT
which is, in turn, dependent on the previous token
circulation. Therefore, in order to compute the
perturbed performance, the only choice is to
construct the perturbed path, which is essentially
Extended Perturbation Analysis with Brute Force
Algorithm (EPA /BFA) (Ho and Li, 1988).
However, the brute force construction of the
perturbed path is required only for the portion of
the perturbed path which differs from the nominal
one because the queue contents, timer status and
event sequence of the perturbed path become
identical to those on the nominal one as shown in
Fig. B-1. Therefore, the PA algorithm for this
problem needs to check whether the perturbed
path begins to differ from the nominal one while
the both paths are identical. After a difference
between the two paths is detected, the algorithm
constructs the perturbed path until it coincides
with the nominal one again.

